풍량 측정 장치(AFMS)

풍량 측정 장치 개요 풍량 측정 장치 구성 풍량 측정 장치 종류 종류별 장,단점 피토우 Probe의 발전 과정 풍량 측정 기준 차압 변환기 풍량 계산 공식

풍량 측정 장치 개요

■ 풍량 측정 장치(AFMS)란 빌딩 HVAC System, Industrial Process Control, Laboratory Control 등 다양한 Applications 에 있어 덕트내에 흐르고 있는 유속을 측정 하여 단위 시간당 단위 면적을 통해 흐르는 유체의 양을 측정하는 기기

평균 차압식 풍량 측정 장치 구성

■ 풍량 측정 장치는 덕트내에 설치하여 평균 풍속을 측정하는 평균 풍량 측정용 피토우 푸르브(Pitot Probe)와

Pitot Probe에서 감지한 공기적 신호를 전 기적 신호로 변환시켜주는 차압변환기 (Differential Pressure Transmitter)로 구성 됩니다

풍량 측정 장치 종류

■ 차압식(Differential Pressure Type)

Self-averaging Pitot Tube를 사용하여 덕트내에 흐르고 있는 유체의 평균 차압을 측정하여 풍량을 측정

Thermistor or Heated RTD Type

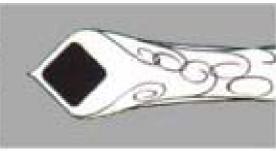
Thermistor에 일정한 온도로 열을 가한 후 유체가 흐름에 따라 Thermistor에서 변화되는 온도차를 이용하여 풍량을 측정

Vortex Type

유체가 흐름에 따라 센서 후방에 형성되는 와동(Vortex) 이나 와동전류(Eddy Current)를 이용하여 풍량을 측정

종류별 장/단점

	장점	단점
평균차압식	 공인된 표준인 Pitot Tube를 응용 많은 Sensing Point 다양한 매체에 적용 가능 다양한 응용 범위 센서에 따라 1.5m/s부터 측정 가능 경제적인 가격 현재 가장 많이 사용되는 방식 	 낮은 풍속에서는 측정에 어려움 측정 정확도가 센서에 따라 차이가 많음(0.75%~3%) 센서에 따라 낮은 풍속에서는 측정에 어려움
Thermistor Or Heated RTD	- 측정 정확도가 비교적 높음 - 비교적 낮은 풍속에서도 측정 가능	 센서 소자에 먼지 등이 쌓이 면 측정 오차가 자승 곡선으로 커짐 부식성 매체에는 사용 불가능 측정 포인트 수가 매우 적음 적용 범위가 일부에 한정 가격이 고가


평균 차압식 풍량 측정 장치의 종류

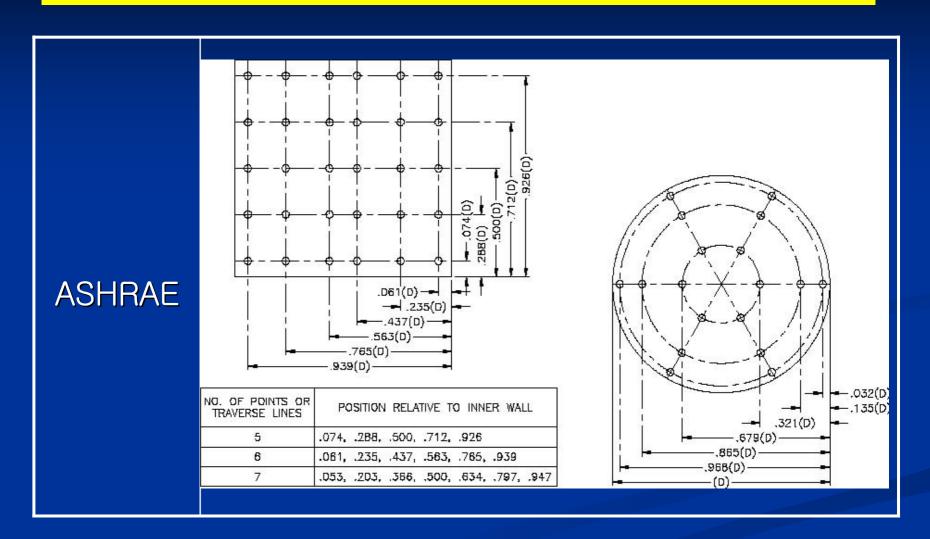
- 제 1 세대: 원형 피토우 프로브(Pitot Probe)
 Accuracy: 1.5~3% Drag Coef.: 1.2
- 제 2 세대: 사각형 피토우 프로브(Pitot Probe)
 Accuracy: 1.0%
 Drag Coef.: 1.6
- 제 3 세대: 타원형 피토우 프로브(Pitot Probe)
 Accuracy: 0.75% Drag Coef.: 0.32

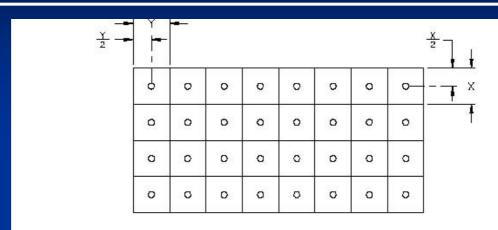
Turn-down Ratio: 17:1

Pitot Probe의 발전 과정

원형 Probe

- 제 1 세대 Pitot Tube
- ±1.5% to 3%의 정확도
- 4:1 Turndown ratio (측정범위 : 6 ~25m/s)
- 진공 영향
- Probe 뒤쪽(하류)에 심한 와류 발생
- Probe가 진동하기 쉬워 차압 신호의 증폭, 진동 및 acoustic 문제 발생
- High drag coefficient (높은 압력 손실)


사각형 Probe


- 제 2 세대 Pitot Tube
- ±1 %의 정확도
- 10:1의 Turndown ratio (측정범위: 2.5 ~ 25m/s)
- 기류의 흐름을 방해하는 커다란 bluff body로 인해 심한 와류 구역 발생
- 진공 영향
- Highest drag coefficient (가장 높은 압력 손실)
- Vibration and acoustic 문제 발생

타원형 Probe

- 제 3세대 Pitot Tube
- ± 0.75%의 정확도
- 17:1의 Turndown ratio (측정범위: 1.5 ~ 25m/s)
- Probe 표면에 붙은 유동경계층
- 저압(정압)측에 박리 (separation) 영향이 없음
- 진공 영향 없음
- 매우 높은 반복성
- 와류 발생 없음
- Lowest drag coefficient (가장 낮은 압력 손실)

	사각형 덕트	원형 덕트
ASHRAE	 최소 25 포인트 이상 측정 최소 2개 이상의 Probe Sensing Point간의 거리는 152mm 이하 Sensing Point 간의 최대 거리는 는 200mm 이하 	- 측정 Point 수는 12 ~ 30 Points - 측정 센서 위치는 2 또는 3 Diameters
AMCA	- 측정 Point 수는 24 Point 이상 - 최소 3 square feet(0.2787 square meter) 당 1 Point 이상	- 측정 Point 수는 24 ~ 48 Points - 측정 센서 위치는 3 Diameters

AMCA

Figure H-2. Distribution of Traverse Points for Rectangular Duct

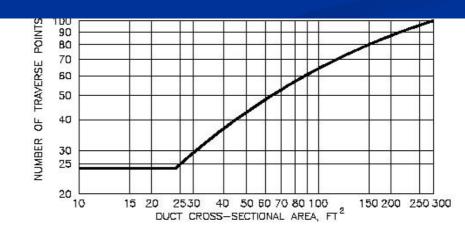
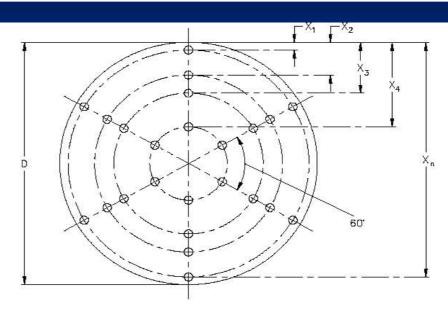



Figure H-3. Recommended Minimum Number of Traverse Points for Rectangular Ducts

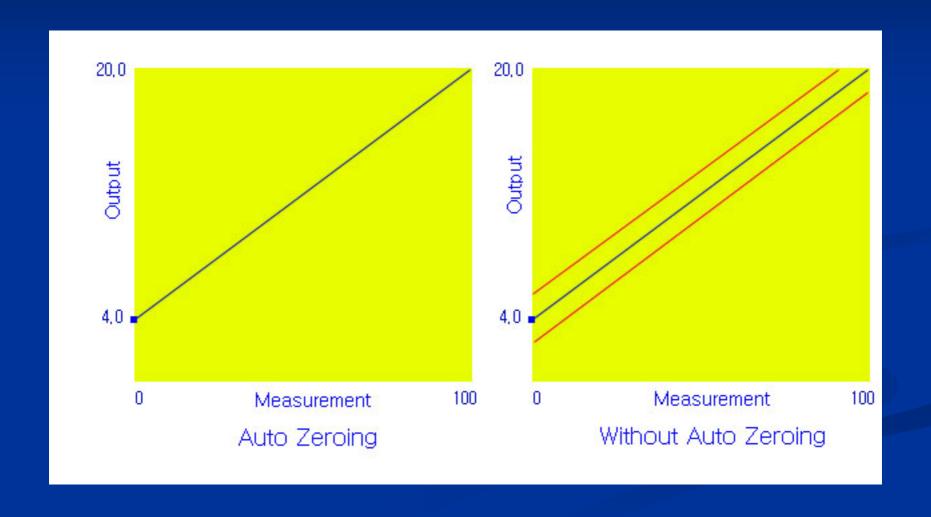
AMCA

 $X_a = D \times K_a$

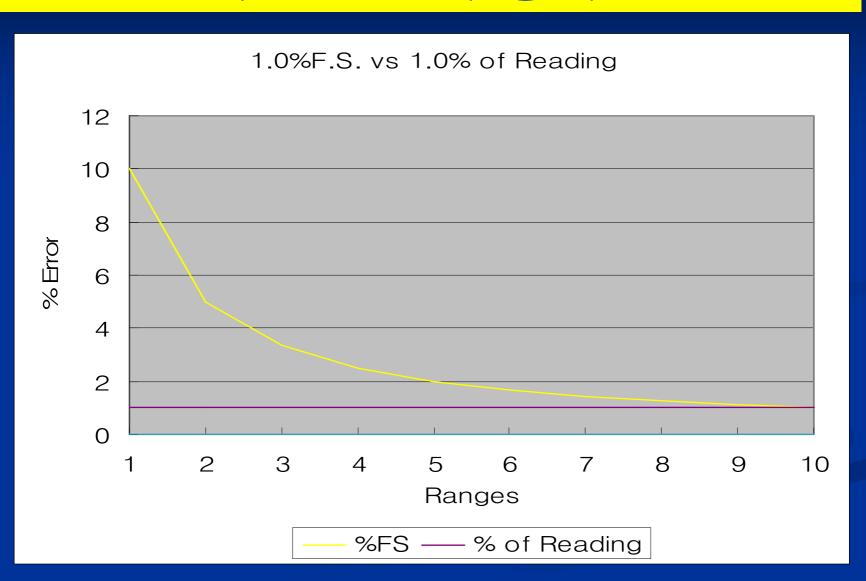
where D is the inside diameter of the duct and Ka is the factor corresponding to the duct size and the traverse point location as indicated in the table below.

Inside Diameter of Duct	Number of Traverse Points in Each of 3 Diameters	К1	K ₂	K ₃	K ₄	K ₅	K ₆	К7	K ₈	K ₉	K ₁₀	K ₁₁	K ₁₂	K ₁₃	K ₁₄	K ₁₅	K ₁₆
Less Than 8 Ft.	8	.021	.117	.184	.345	.655	.816	.883	.978	_	Ĺ	==:	Ţ	ī	-	1	-
8 Ft. Thru 12 Ft.	12	.014	.075	.114	.183	.241	.374	.626	750	.817	.886	.925	.986	227	<u> 1944</u>	E	3322
Greater Than 12 Ft.	16	.010	.055	.082	,128	.166	.225	.276	.391	.609	,724	.775	.834	.872	.918	.945	.990

Figure H-1. Distribution of Traverse Points for Circular Ducts


차압변환기(DP Transmitter)

- 정확도(Accuracy)
 - %F.S. vs % of Reading


■ 자동영점보정기능(Auto-Zeroing)

■ 온도 영향(Thermal Effect)

자동 영점 보정 기능(Auto Zeroing)

차압 변환기 정확도

차압변환기의 온도 영향

- Thermal Effect란 차압변환기에 사용된 부품 재질의 서로 다른 팽창 계수가 주된 원인으로, 변환기 주변 공기의 순환 온도의 변화로 인해 차압변환기에 더해지는 오차값
- 이러한 동작 부정확성("Thermal Effect"로 카타로그에 표 시되어 있는)은 표시된 변환기의 Accuracy 에는 포함되 어 있지 않음
- Thermal effect는 %F.S.(percentage of full span) 또 는 %F.S.O.(percentage of full scale output)으로 표시
- 따라서 주어진 Operating Span에 대한 정확성을 계산함에 있어 필요한 계산 공식을 사용하여 표시된 온도 영향 값도 반영하여 정확성을 계산하여야 함

풍량 계산 공식

■ 풍속(Air Velocity)

m/s = 20.34 x (delta P)^{0.5} x Cp x Ct

delta P = inch W.C.

Cp = Coefficient of Probe

Ct = Temperature Coefficient

- 풍량(Air Volume) CMM = m/s x Area(m²) x 60 CMH = m/s x Area(m²) x 3600